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Abstract. Plasmas and dust are a couple of the ubiquitous elements of the Universe. The nonlinear dust-
acoustic-wave propagation in a space or laboratory un-magnetized dusty plasma is hereby considered, which
is described by a spherical Kadomtsev-Petviashvili equation. By virtue of computerized symbolic compu-
tation, we obtain the analytically-expressed spherical nebulons and an auto-Bäcklund transformation for
the electrostatic potential in such a plasma. With figures, we discuss the features of the nebulon structures,
and propose some (3+1)-dimensional, possibly-observable nebulonic effects for the future space/laboratory
plasma experiments.

PACS. 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including para-
metric effects, mode coupling, ponderomotive effects, etc.) – 52.35.Sb Solitons; BGK modes – 52.35.Fp
Electrostatic waves and oscillations (e.g., ion-acoustic waves) – 02.70.Wz Symbolic computation (computer
algebra) – 05.45.Yv Solitons

1 Introduction

The word “nebulon” presented in this paper comes after
the astrophysical word “nebula”, or the cloudlike struc-
ture observed in the Milky Way, which is composed of
dust and gas, as stated, e.g., in references [1]. Specifically
speaking, the nebulon structures as shown in Figures 2
and 6 via solution (24) in this paper look like the gaseous
shell of the Ring nebula in Lyra, as seen in Figure 1, the
photograph given by reference [2]. The nebulon structures
are solitonic, and can exist beyond the normal solitary or
travelling waves.

Plasmas and charged dust are a couple of the om-
nipresent components of the Universe. They are seen ev-
erywhere, such as in the tokamaks, microelectronic pro-
cessing devices, planetary rings, cometary comae and tails,
interstellar molecular clouds, noctilucent clouds in the
arctic troposphere and mesosphere, lightening in thun-
derstorms, etc. The plasma instruments of spacecrafts
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Fig. 1. Ring nebula (M57), about one light-year across and
2,000 light-years away in the northern constellation Lyra. Pho-
tograph credit: reference [2].
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Voyager 1, Voyager 2 and ICE have detected small dust
particles striking them [3]. See, e.g., reference [4] and ref-
erences therein for a brief review.

For the space and laboratory un-magnetized dusty
plasmas, people have well understood the linear proper-
ties of the dust acoustic waves [5,6], in which the iner-
tia comes from the dust-particle mass with the restoring
force from the pressures of inertialess electrons and ions,
and have turned the attention towards the nonlinear
properties there [7–9]. A good example is the system-
atic, planar-geometry efforts on the dust acoustic solitary
waves [5,8,10], although that geometry may not be real-
istic for the space and laboratory devices [11,12]. The ob-
served features in the auroral region cannot be accounted
for by a purely planar-geometry model [13], and the re-
cent theoretical results with the nonplanar geometry also
differ a lot from the planar ones [11,12,14].

Reference [11] focuses on the spherical dust acoustic
solitary waves in an un-magnetized dusty plasma whose
constituents are negatively-charged cold dust fluid and
Boltzmann electrons and ions. Reference [12] generalizes
such work by studying the transverse perturbation with
the wave propagating in an axle-symmetry spherical ge-
ometry. The nonlinear dynamics of low phase speed (in
comparison with the electron and ion thermal speeds) dust
acoustic waves is governed [11,12] by
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where nd is the dust particle number density normal-
ized by its equilibrium value nd0, t, r and θ are the
time, radial and latitude coordinates under the axle sym-
metry with t and r in units of the dust plasma period
ω−1

pd
=

√
md/4 π nd0Z2

d0 e
2 and Debye length λDm =√

kB Ti/4 π nd0 Zd0 e2, ud and vd are the dust fluid ve-
locities in r and θ directions normalized by the effec-
tive dust acoustic velocity Cd =

√
Zd0 kB Ti/md, Φ is

the electrostatic wave potential normalized by kB Ti/e,
σi = Ti/Te, µe = ne0/Zd0 nd0 = 1/(µ − 1) and µi =
ni0/Zd0 nd0 = µ/(µ − 1) with µ = ni0/ne0. From the
set of equations (1–4) and by using the reductive pertur-
bation technique, references [11,12] have introduced the

stretched coordinates [14] as ξ = ε1/2(r−v0 t), η = ε−1/2 θ
and τ = ε3/2 t, and expanded nd, ud, vd and Φ in power
series of a small parameter ε, e.g., Φ = ε Φ(1)+ε2 Φ(2) + · · ·,
so as to end up with the following spherical Kadomtsev-
Petviashvili equation,
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and some solitary wave solutions (mostly numeri-
cally), where Φ ≡ Φ(1), B = v3

0/2 with the wave
velocity as v0 = ±(µi + µe σi)−1/2 (so that the
waves propagate either outward or inward), and A =
−(1/2)

[
3/v0 + v3

0(µe σ
2
i − µi)

]
. Equation (5) has recently

been derived out for the dust ion-acoustic waves [29].
In reference [11], equation (5) reduces to a modified
Korteweg-de Vries equation, without the transverse per-
turbation. Other topics on the Kadomtsev-Petviashvili-
typed equations can be found, e.g., in references [15,16].

In this paper, we will symbolically work out certain
analytically-expressed nebulon structures and Bäcklund
transformation to equation (5), and propose possibly
observable effects for the future space and laboratory
experiments.

2 Computerized symbolic computation
and auto-Bäcklund transformation
for the electrostatic potential in a space
or laboratory un-magnetized dusty plasma

We will consider the general case of A �= 0 and v0 �= 0
(or equivalently B �= 0), as indicated via the defini-
tions of those parameters, and perform symbolic computa-
tion with the truncated Painlevé expansion of the depen-
dent variable in a Laurent series about the pole manifold
ψ(ξ, η, τ) = 0 in the sense of references [15,17,18]:

Φ(ξ, η, τ) = ψ−J(ξ, η, τ)
J∑

l=0

Φl(ξ, η, τ)ψl(ξ, η, τ), (6)

where Φl(ξ, η, τ)’s and ψ(ξ, η, τ) are all analytic functions
with Φ0(ξ, η, τ) �= 0 and ψξ(ξ, η, τ) �= 0, while J is the
natural number determined via the leading-order analysis
as J = 2, so that

Φ(ξ, η, τ) =
Φ0(ξ, η, τ)
ψ(ξ, η, τ)2

+
Φ1(ξ, η, τ)
ψ(ξ, η, τ)

+ Φ2(ξ, η, τ). (7)
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Φ0,η

2 η τ 2 v0 ψ2
+

Φ1,η

2 η τ 2 v0 ψ
+

Φ2,η

2 η τ 2 v0
− Φ0 ψη

η τ 2 v0 ψ3
− Φ1 ψη

2 η τ 2 v0 ψ2
− 2Φ0,η ψη

τ 2 v0 ψ3
− Φ1,η ψη

τ 2 v0 ψ2
+

3Φ0 ψη
2

τ 2 v0 ψ4
+

Φ1 ψη
2

τ 2 v0 ψ3
+

Φ0,ηη

2 τ 2 v0 ψ2

+
Φ1,ηη

2 τ 2 v0 ψ
+

Φ2,ηη

2 τ 2 v0
− Φ0 ψηη

τ 2 v0 ψ3
− Φ1 ψηη

2 τ 2 v0 ψ2
+
Φ0,ξ

τ ψ2
− 2ψτ Φ0,ξ

ψ3
+
AΦ0,ξ

2

ψ4
+
Φ1,ξ

τ ψ
− ψτ Φ1,ξ

ψ2
+

2AΦ0,ξ Φ1,ξ

ψ3
+
AΦ1,ξ

2

ψ2
+
Φ2,ξ

τ

+
2AΦ0,ξ Φ2,ξ

ψ2
+

2AΦ1,ξ Φ2,ξ

ψ
+ AΦ2,ξ

2 − 2Φ0 ψξ

τ ψ3
− Φ1 ψξ

τ ψ2
− 2Φ0,τ ψξ

ψ3
− Φ1,τ ψξ

ψ2
+

6Φ0 ψτ ψξ

ψ4
+

2Φ1 ψτ ψξ

ψ3
− 8AΦ0 Φ0,ξ ψξ

ψ5

− 6AΦ1 Φ0,ξ ψξ

ψ4
− 4AΦ2 Φ0,ξ ψξ

ψ3
− 6AΦ0 Φ1,ξ ψξ

ψ4
− 4AΦ1 Φ1,ξ ψξ

ψ3
− 2AΦ2 Φ1,ξ ψξ

ψ2
− 4AΦ0 Φ2,ξ ψξ

ψ3
− 2AΦ1 Φ2,ξ ψξ

ψ2

+
10AΦ0

2 ψξ
2

ψ6
+

12AΦ0 Φ1 ψξ
2

ψ5
+

3AΦ1
2 ψξ

2

ψ4
+

6AΦ0 Φ2 ψξ
2

ψ4
+

2AΦ1 Φ2 ψξ
2

ψ3
− 96B Φ0,ξ ψξ

3

ψ5
− 24B Φ1,ξ ψξ

3

ψ4

+
120B Φ0 ψξ

4

ψ6
+

24BΦ1 ψξ
4

ψ5
+
Φ0,ξτ

ψ2
+
Φ1,ξτ

ψ
+ Φ2,ξτ − 2Φ0 ψξτ

ψ3
− Φ1 ψξτ

ψ2
+
AΦ0 Φ0,ξξ

ψ4
+
AΦ1 Φ0,ξξ

ψ3
+
AΦ2 Φ0,ξξ

ψ2

+
36B ψξ

2 Φ0,ξξ

ψ4
+
AΦ0 Φ1,ξξ

ψ3
+
AΦ1 Φ1,ξξ

ψ2
+
AΦ2 Φ1,ξξ

ψ
+

12B ψξ
2 Φ1,ξξ

ψ3
+ AΦ2 Φ2,ξξ +

AΦ0 Φ2,ξξ

ψ2
+
AΦ1 Φ2,ξξ

ψ

− 2AΦ0
2 ψξξ

ψ5
− 3AΦ0 Φ1 ψξξ

ψ4
− AΦ1

2 ψξξ

ψ3
− 2AΦ0 Φ2 ψξξ

ψ3
− AΦ1 Φ2 ψξξ

ψ2
+

72B Φ0,ξ ψξ ψξξ

ψ4
+

24B Φ1,ξ ψξ ψξξ

ψ3

− 144B Φ0 ψξ
2 ψξξ

ψ5
− 36B Φ1 ψξ

2 ψξξ

ψ4
− 12B Φ0,ξξ ψξξ

ψ3
− 6B Φ1,ξξ ψξξ

ψ2
+

18B Φ0 ψξξ
2

ψ4
+

6B Φ1 ψξξ
2

ψ3
− 8Bψξ Φ0,ξξξ

ψ3

− 4B ψξ Φ1,ξξξ

ψ2
− 8B Φ0,ξ ψξξξ

ψ3
− 4B Φ1,ξ ψξξξ

ψ2
+

24B Φ0 ψξ ψξξξ

ψ4
+

8B Φ1 ψξ ψξξξ

ψ3

+
B Φ0,ξξξξ

ψ2
+
BΦ1,ξξξξ

ψ
+B Φ2,ξξξξ − 2B Φ0 ψξξξξ

ψ3
− BΦ1 ψξξξξ

ψ2
= 0, (8)

Substituting expression (7) into equation (5) with sym-
bolic computation yields

see equation (8) above,

in which we make the coefficients of like powers of ψ to
vanish, and obtain the Painlevé-Bäcklund equations as
follows,
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What we have obtained is the set of equations (7) and (9–
15), which constitutes an auto-Bäcklund transformation
for the electrostatic potential in a space or laboratory un-
magnetized dusty plasma, since the whole set is mutually
consistent, or, explicitly solvable with respect to ψ(ξ, η, τ),
Φ0(ξ, η, τ), Φ1(ξ, η, τ) and Φ2(ξ, η, τ), with a solved exam-
ple seen next.
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3 More comments on the Bäcklund
transformations and related topics
with symbolic computation

Symbolic computation is a new branch of artificial intel-
ligence, with its remarkable feature as the permeation of
computer sciences among various fields of science and en-
gineering. Symbolic computation drastically increases the
ability of a computer to exactly and algorithmically deal
with the expressions, so that it is thought as the sign of
modern scientific computations. Today, a new symbolic-
computation-based research direction has been formed
worldwide, to analytically investigate the solitonic phe-
nomena and relevant nonlinear evolution equations which
describe the underlying mechanisms of space plasmas, at-
mospheric and oceanic fluid dynamics, optical fiber com-
munications, physics, chemistry, applied mathematics, bi-
ology, material sciences, etc. See references [16,19–21] for
a review.

An auto-Bäcklund transformation works as a system
of equations relating a “seed” solution of a nonlinear evo-
lution equation to another (more complicated) solution of
the same equation. This way, we would, in principle at
least, be able to progressively construct more and more
complicated solutions of the equation. For example, if the
seed is a nebulon structure via solution (24) for the elec-
trostatic potential in a space or laboratory un-magnetized
dusty plasma, we could in principle construct a nebulonic
“spectrum” for the electrostatic potential.

Beyond dusty plasmas, we have seen that the Bäcklund
transformations can be applied to the investigations on
the liquid surface waves in the presence of sea ice or
surface tension [20], various water waves models [17,22–
24], electron beam plasmas [25], elastic rod immersed in-
side a viscoelastic medium [26], etc. More comments on
the Bäcklund transformations can be referred to, e.g.,
reference [27].

Of special interest, many recent symbolic-computation
contributions have been summarized in a learned
Princeton-Manhattan-Paderborn-Maplesoft review arti-
cle [19].

4 Nebulons for the electrostatic wave
potential

For the nebulonic features, we will construct a set of trial
solutions,

ψ(ξ, η, τ) = 1 + e ξ α(η,τ)+β(η,τ)

and Φ2(ξ, η, τ) =
∞∑

n=0

Φ2n(η, τ) ξn, (16)

where the functions α(η, τ), β(η, τ) and Φ2n(η, τ)’s are
sufficiently differentiable, with α �= 0 since ψξ �= 0. The ξ-
linear and ξ-expansion forms are used solely for the simpli-
fication of the computation work. Using expressions (16)

in the auto-Bäcklund transformation above, we perform
symbolic computation, and get
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ψ−3 & ξ1 with ψ0 & ξ2: α = α(τ) only. (21)

Then, the coefficients of ψ−3, ψ−2 and ψ−1 give rise to
the same equation,

2 η τ v0 α(τ) + 2 η τ2 v0 α
′(τ) + βη(η, τ) + η βηη(η, τ) = 0,

(22)
which is solved out symbolically as

β(η, τ) = −η
2 τ v0 α

2
+ β0(τ), (23)

where the prime sign denotes the first derivative with re-
spect to τ , β0(τ) is a differentiable function but α reduces
to a constant. With the relevant expressions combined to-
gether, we arrive at a family of exact analytic nebulon
solutions to equation (5), as follows,

Φ(ξ, η, τ) =
3Bα2

A
Sech2

[
η2 α τ v0

4
− α ξ

2
− β0(τ)

2

]

− β′
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Aα

− B α2

A
. (24)

The nebulon structures will be discussed next.

5 Discussions and conclusions

The nebulon structures via solution (24) are solitonic,
with the exact solitary wave solution in reference [12]
(Eq. (9) therein) as its special case, with α = −

√
U0/B

and β0(τ) = −U0 α τ . As seen below, solution (24) can go
beyond the normal solitary waves.

The nebulon structures via solution (24) (including its
amplitude and velocity) and auto-Bäcklund transforma-
tion via equations (7) and (9–15) can be determined by
the parameters, A, B and v0, of the dusty plasma system
under investigation. The nebulon structures also rely on
the initial conditions through α and β0(τ).

In Figures 2–6, (A) the coordinates (ξ, η, τ) for
solution (24) have been transformed back to the
aforementioned spherical coordinates (r, θ, t) with the un-
derstanding of the axle symmetry and normalization, and
correspondingly, to the Cartesian coordinates (x, y, z, t),
normalized as well, with the axle symmetry about the z-
axis; and (B) the values chosen for the parameters and
functions occurring in solution (24) are purely for the pur-
pose of picture drawing and qualitative analysis. In reality,
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Fig. 2. Observable nebulon surface via solution (24) of equation (5), for the electrostatic potential Φ in a space or laboratory
un-magnetized dusty plasma, with the parameters and functions chosen as ε = 0.01, σi = 0.4, α = 5, µ = 1.5, v0/ | v0 | = 1 and
β0(t) = (1/50) sin(4 t/5). The values of time used for the three cartoon graphs are t = −5, 2 and 9 respectively. Note that we
look up from the bottom.
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Fig. 3. Observable time evolution of the nebulon verses the
axis z. Everything is the same as Figure 2 except that x = 0
but t varies.

the detailed application of the nebulon structures requires
a thoughtful choice of those parameters and functions.

Figure 2 is a set of animation graphs showing the
birth and expansion of a nebulon via expression (24).
Each graph, or each “photo” taken at a designated time,
gives rise to the sectional drawing of the nebulon, or the
watermelon-rind-like or Earth-crust-like solitonic struc-
ture “cutting” in the middle, so as to describe the elec-
trostatic potential in a space or laboratory un-magnetized
dusty plasma. By virtue of the axle symmetry, we can
use such sectional drawing to represent the whole rind or
crust. However, as time goes on and as seen in Figure 2
(and other figures next), the spherical shape of the rind
or crust deforms because of the latitude dependence of
the phase velocity of the nebulon, and the ambient field
fluctuates because of the existence of β0(τ) function.

From Figure 2 (and other figures next), we understand
that a nebulon structure with certain constant amplitude
but varying β0(τ) can exist when the latitude perturba-
tion is considered, which is more general than the claim
in reference [12], and different from the report by refer-
ences [11,28] on the non-existence of an exact analytic
solution (without the latitude perturbation there).

Figures 3 and 4 depict the time evolution around the
birth of a nebulon structure for Figure 2 verses the z-axis,
with Figure 4 also indicating both the further solitonic
expansion of the nebulon and long-time history before the

birth of the nebulon. In Figures 3 and 4, by setting x = 0,
we investigate the electrostatic potential field along the z-
axis, and looking towards both the north and south poles,
we discover a single soliton on each side moving away from
us. The speeds of those solitons are different since there
is no latitude symmetry. The ambient-field fluctuations
are clear in Figures 3 and 4. The two solitons are the
dark/rarefactive solitons since this plasma system lead to
this type of solitons only [29].

Figure 5 provides us with the time evolution of another
nebulon structure. The form of β0(t) assumed here is dif-
ferent from that for Figure 3, but the birth and expansion
of the nebulon aboard the ambient field are similar to
those in Figure 3.

Some nebulons can expand in space, as displayed in
Figures 2–5, while other nebulons can shrink, as revealed
in the set of animation graphs of Figure 6, depending
on the choices of the parameters and functions of solu-
tion (24). However, different from that reported in ref-
erence [12] (the lines below Eq. (4) and above Eq. (10)
there), we see that v0 is not the only decisive factor for a
nebulon to propogate outwards or inwards. Even if with
the same v0 chosen, the expanding nebulon in Figure 2
and shrinking nebulon in Figure 6 can both exist. The
reason is the different selection of β0(t)’s.

We note that the nonstationary lump-pulse profile nu-
merically obtained in reference [12] (i.e., Figs. 1–3 there)
seems a part belonging to the nebulon evolution history
presented in this paper, since that profile looks like the
first graph of Figure 2, the thick solid line in Figure 4, as
well as the birth period of a nebulon shown in Figures 3
and 5.

The nebulon structures revealed in Figures 2–6 can
be treated as a set of the (3+1)-dimensional, possibly
observable effects, which may help to understand the
salient features of multi-dimensional dust acoustic waves
in the space and laboratory un-magnetized dusty plas-
mas. Hopefully the future space/laboratory plasma exper-
iments could investigate those effects.

In conclusion, space and laboratory dusty plasma
physics are among the most active frontiers, since plas-
mas and dust are a couple of the omnipresent constituents
of the Universe. The nonlinear dust-acoustic-wave
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Fig. 5. Another view on the time evolution of the nebulon
verses the axis z. Everything is the same as Figure 3 except

that β0(t) = (1/10) e−(t−2)2/10.

propagation in a space or laboratory un-magnetized dusty
plasma is hereby considered with computerized symbolic
computation, which is described by equation (5). What we
have obtained is an auto-Bäcklund transformation and the
analytically-expressed spherical nebulons for the electro-
static potential in such a plasma. With the above figures,
we have discussed some salient features of the nebulon
structures, and proposed the relevant, (3+1)-dimensional,
possibly-observable nebulonic effects for the future space
and laboratory plasma experiments.
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